
Singular behaviour of the free energy in the sol-gel transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 L301

(http://iopscience.iop.org/0305-4470/14/8/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) I23O1-L306. Printed in Great Britain 

LETTER TO THE EDITOR 

Singular behaviour of the free energy in the sol-gel 
transition 

M Daoud and A Coniglioi 
Laboratoire LBon Brillouin, CEN Saclay, 9 1191 Gif-sur-Yvette Cedex, France 

Received 7 May 1981 

Abstract. The problem whether the sol-gel transition is accompanied by singularities in the 
free energy is investigated. Two kinds of gels are considered, the weak and the strong gels. 
In the former case the cross-links are ‘annealed’, while in the latter they are ‘quenched’ or 
permanent. It is found that the ‘annealed’ free energy has no singularity while the 
‘quenched’ free energy has a singularity at the percolation threshold, given by the elasticity 
critical exponent. 

The sol-gel transition, although studied for many years (Flory 1953, de Gennes 1979), 
is still not fully understood. From the experimental point of view, the sol phase can be 
characterised by a finite value of the viscosity while the gel phase is characterised by an 
infinite viscosity (in practice a viscosity larger than a very high value conventionally 
fixed). A theoretical approach to this problem is by means of percolation concepts 
(Essam 1980, Stauffer 1979). In this approach, the sol is the phase where only finite 
molecules are present, and the gel is the phase where a macroscopic molecule infinite in 
spatial extent coexists with finite molecules. The question of whether or not such 
transition is accompanied by a singularity in the free energy has not received much 
attention. The existence and nature of such a singularity will be the main object of this 
paper. More explicitly, in the usual percolation problem, one considers only the 
connectivity properties of the clusters. It is usually accepted that the free energy does 
not have any interesting property at the percolation threshold. In the following, we will 
consider two different kinds of gelations, where the bonds are respectively annealed or 
quenched (see below), and see that the free energy is very different for these two cases: 
whereas it does not show any singularity in the former case, it does in the latter, and this 
is our central result. On the other hand, the connectivity properties for both cases are 
the same and are identical to those of the percolation problem, as expected. 

Let us briefly review the essential features of the gelation theory (Stauffer 1975, de 
Gennes 1976a, b). For simplicity, we consider the case of polyfunctional condensation 
on a system of identical monomers without solvent, each with a functionality f = 4 (see 
figure 1). The monomers are indicated by an open circle and the bonds by wavy lines. 
The bonds between two nearest-neighbour monomers are randomly distributed. The 
probability for a given bond to be present is given by pB. If the probability pB is low 
enough, there are only finite clusters made of monomers linked by bonds: this is the sol 
phase (figure l ( a ) ) .  If pB is high enough, there exists in addition to finite molecules a 
macroscopic (infinite) cluster: this is interpreted as the gel phase (figure l(6)).  
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Figure 1. Percolation model for the sol-gel transition: the open circles are the monomers, 
the wavy lines are the bonds between monomers, which occur with probability p e :  ( a )  is the 
sol phase; ( b )  is the gel phase. 

In order to study the free energy, we have to distinguish between two kinds of gels: 
the weak and the strong gels (de Gennes 1979). 

The weak gels are characterised by the fact that the bonds are not permanent and 
they can form and break in thermal equilibrium. If EB and SB are the energy and 
entropy for bound states, E,  and S,  the same quantities for the unbound state, then the 
bond probability is given by 

where k is Boltzmann’s constant, T the temperature. 
The free energy of such a system must be calculated as for an ‘annealed’ system. To 

be more precise, given a distribution of bonds one calculates the partition function and 
then averages over all configurations of bonds. For the system described in figure 1 the 
free energy per particle is 

where pB is given by (1). Such free energy clearly has no singularity at the percolation 
threshold pc. This is true even when correlation due to solvent is taken into account 
(Coniglio eta1 1979). Therefore there is no phase transition in the ordinary sense at the 
percolation threshold. 

The absence of a singularity in the free energy at the percolation threshold somehow 
is not surprising. In fact, in the weak gels the appearance of an infinite cluster does not 
necessarily produce a sharp change in the properties of the system. The viscosity, for 
example, does not necessarily diverge at p c  although it can become extremely high. In 
fact, a little ball, as a probe to measure viscosity, will eventually penetrate into the 
infinite network, due to the properties of the bonds to break and reform in the course of 
time. 

In weak gels, the gel phase is more similar to a highly viscous liquid (de Gennes 
1979), and therefore it is not convenient to consider the percolation threshold as the 
critical point in the sol-gel transition. Instead, as in the glass transition, it is more 
appropriate to consider a transient region Apc in which one goes from the fluid (sol) 
phase to the viscous (gel) phase. Of course, in the hjghly viscous regime, the time 7 

required to reach the equilibrium is very large. Onlyfor times involved much larger than 
7 is the ‘annealed’ free energy adequate to describe such a system. For time scales much 
shorter than 7 such a gel behaves more like a strong gel. A better description will be 
given by a ‘quenched’ free energy. Such a situation is now described. 
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In the strong gels an infinite energy is associated with a cross-link. Such cross-links 
are therefore permanent and randomly distributed. The strong gels must then be 
treated as a quenched systems. Let us make it clear that only the cross-links are 
quenched. Once they are formed they cannot break (chemical as opposed to Van der 
Waals cross-links for instance). But the motions of the molecules are otherwise 
completely free (see below). 

We want now to write formally the free energy of such a quenched system. We 
always refer to the simple case depicted in figure 1. Any realisation of bonds generates a 
distribution of different species of molecules. Any species is characterised by the 
number of monomers s and its topology t (see figure 2). We indicate this distribution by 

Figure 2. Example of two molecules made of four monomers with different topologies. 

n = {nsr} ,  a set of numbers specifying the numbers of molecules belonging to the various 
species s and t. In order to calculate the free energy of such a quenched system, we first 
calculate the free energy for a given realisation of bonds {C} and then average over all 
possible realisations of bonds. For a given realisation of bonds {C}, the free energy 
F{C} is 

F{C} = lg Z { n }  (3) 

where Z { n }  is the number of configurations compatible with the distribution of 
molecules n generated by the realisation of bonds {C}. By averaging equation (3) over 
all bond realisations, we obtain the quenched free energy F, 

p = (k ZbI), 
where the brackets stand for the average over the bond realisations. 

given realisation {C} of bonds is given by 
If we suppose that the bonds are randomly distributed, the probability P{C} for a 

P{ C} = p;I (1 - p B y "  (4) 

where n is the number of bonds in the configuration {C} and N the total number of 
bonds in the lattice?. 

Now we want to estimate the free energy (3). We first make a rough evaluation of it 
for p s p c ;  later we will discuss the behaviour of the free energy in more detail below 
and above pc.  

If w is the average degeneracy of a finite molecule, the partition function Z { n }  can 
be written 

Z { n }  = wNc ( 5 )  

i This random distribution of bonds may be valid in many cases of gel formation. One example is when the 
bonds are formed by radiation. On the other hand, when the bonds are formed in the process of a chemical 
reaction, the kinetics may play an important role and the bond distribution may not be the same as given by (4) 
(see for instance Manneville and de Skze 1981). 
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where Nc is the number of molecules, and from (4) 

p = (Nc)  lg w (6) 

which is proportional to the average number of clusters. Therefore it has the same 
critical behaviour as the average number of clusters in the usual random percolation 
problem, namely 

The presence of such a singularity in the free energy shows that there is a phase 
transition in the ordinary sense at the percolation threshold. 

Note that this singularity appears when the density of chemical bonds p B  is used as a 
variable. Since the bonds are permanent, they cannot be varied with the temperature 
and therefore the singularity cannot be seen in a specific heat measurement, for 
instance. 

In the following, we want to discuss in more detail the critical behaviour of the free 
energy both above and below p c  in the vicinity of the threshold p c  for the quenched 
system. We first consider the contribution to the free energy above p c  due to the infinite 
cluster. For simplicity, let us consider the usual model in which the infinite cluster is 
considered as a network made of nodes connected by large chains (de Gennes 1976a, b, 
Skal and Shklovskii 1974, 1975). The node to node distance is of the order of the pair 
connectedness length 5 in the percolation problem. 

The elastic free energy per unit volume, Fe,, can be written as (de Gennes 1976a, b) 

Fe, = C K (Ri - Rj)* 
nodes 

(9) 

where the sum is restricted to nodes in the unit volume, lRi -Rjl = 5 is the distance 
between two nearest-neighbour nodes and K is the effective elastic constant of the 
chain connecting i to j .  Since in a volume ..fd there is only one node, the elastic free 
energy per unit volume is 

(10) 

where p is the elasticity exponent. It has been suggested that K - E' where 5 is the 
conductivity exponent of the chain connecting i to j (de Gennes 1976a, b, Harris and 
Kirkpatrick 1977), leading to 

(1 l a )  

Fe, - t p d K t 2  - E @ 

g = (d - 2)v + f 
which coincides with the conductivity exponent. More recently, we suggested that 
K - [-*, leading to 

( I l b )  

where v and LY are the usual percolation exponents. 
We now evaluate the contribution to the free energy Ff due to the finite clusters, 

both below and above p c .  If n,, is the number per unit volume of molecular species (s, t )  
we can write 

p = vd = 2-LY 
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where fT(& t )  = lg is the contribution due to the translational degrees of freedom 
and is the same as in a mixture of gases of different species (s, t )  (see for example 
Sommerfeld (1973)). fel(s, t )  corresponds to those internal degrees of freedom of the 
finite clusters which are the analogue of the elastic term in the infinite cluster, so that we 
call this contribution a ‘local elastic’ term by analogy. We note that this term does not 
contribute to the macroscopic elasticity, but it contributes to the entropy. ByfR(s, t )  we 
denote the contribution coming from other internal degrees of freedom such as 
rotation. . . . 

The contribution to the critical behaviour in (12) comes from those terms in the sum 
corresponding to clusters of linear dimensions 6 - E - ” .  In a volume td there is one such 
cluster. Therefore 

Ff - tWd (fT f f R  +fell 

where f ~ ,  fR  and fel are the contributions from such critical clusters. f~ - lg s t - d  and 
s - tdf (where df is the fractal dimensionality of the cluster). Therefore f~ does not add 
any contribution to the leading singularity E -”d, except from logarithmic corrections. 
We also suppose that there is no other contribution from fR.  

It is plausible to assume that fel = K t 2  as in the infinite network. Therefore 

Fdfd - E f i .  

Summing all these contributions, the singular part of the free energy both below and 
above p c  can be written as 

F - A & ~ - ~ + B P  (14) 

where A and B are numerical constants. 
We note that in mean field theory (d = 6 ) ,  g = 3 and both contributions in (14) are of 

the same order. For d = 3, ( l l a )  leads to an approximate value for g between 1.6 and 
2.0 (Straley 1977, Harris and Kirkpatrick 1977) which would be dominant compared 
with 2 -a  = 2.6.  On the other hand, if we accept (1 l b )  then g = 2 - a in any dimension. 
We will not enter in the discussion of the value for the exponent, our main point here 
being just to show that there is a singularity in the free energy at the percolation 
threshold. 

In conclusion, we have considered the question of whether or not the sol-gel 
transition is accompanied by a singularity in the free energy as in ordinary phase 
transitions. Two very different cases were studied: the strong and weak gels where the 
cross-links are respectively quenched or annealed. While in the first case there is a 
singularity in the free energy, meaning a phase transition, no such singularity is found in 
the latter case. 

The authors wish to thank G Jannink, L de Sbze and D Stauffer for various discussions 
and comments. M Daoud thanks the University of Naples for its warm hospitality. 
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